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Abstract. Nonlinear asymmetric breakup of a circular capillary jet stressed at the surface by an electrical
field is presented. The method of straining of coordinates is used to calculate the cutoff wave number. The
numerical results show that an initially sinusoidal wave develops in an asymmetrical form by the nonlinear
effect from higher harmonics. It is shown that a linear relation-ship exists between the breakup times and
the logarithms of the amplitudes of the wave. The slopes of these lines can be used to calculate the actual
growth rates. The effective growth rates are displayed in a graphical form.

PACS. 47.65.+a Electrohydrodynamics

1 Introduction

The stability of a liquid jet of circular cross-section un-
der a small external disturbance at the surface of the jet
has been considered by many investigators. Work on this
subject was started in the nineteenth century by Bidone,
Savart, and others. Based on the linearized theory, Lord
Rayleigh [1] gave a detailed analytical explanation of this
phenomenon. Experimental studies [2] of the breakup of a
liquid jet have shown that Rayleigh’s uniform drop model
is inadequate. In these experiments, non-sinusoidal de-
formations were observed indicating nonlinear behavior.
These observations motivated several researchers to for-
mulate a nonlinear theory for the breakup of liquid jets.

Yuen [3] developed a third-order nonlinear theory
for this problem using the method of straining coordi-
nates. Wang [4], Nayfeh [5], Chaudhary and Redekopp [6],
Kakutani et al. [7], and Lafrance [8] have also carried out
nonlinear analyses of the problem. In more recent years,
electrohydrodynamic stability of capillary jets has been
investigated by Gañán-Calvo [9] and Mestel [10].

In recent years, there has been considerable interest
in the effect of an electrical or a magnetic field on the
stability of a fluid jet. The interest primarily arose from
astrophysical problems, but more recently the question
has been of growing importance for technological devices.
The physical properties of liquid jets play a fundamental
role in a number of applications such as spray drying,
electronic ink jet printing, the spinning of synthetic fibers,
and fuel atomization.

The theoretical and the experimental studies which
are concerned with the effect of electrical fields on the
capillary waves of a circular jet were investigated by
Melcher [11]. However, the analysis of this study was con-
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fined within the frame work of the linear theory. Malik
and Singh [12] carried out the nonlinear analysis of the
same problem by using the method of straining coordi-
nates. Lardner and Trehan [13] examined the effect of a
magnetic field on the nonlinear capillary instability of a
fluid jet using method multiple scales, while, Trehan and
Lardner [15] investigated the nonlinear standing waves of
the same problem.

For an astrophysical problem, Chhabra and
Trehan [15] examined the effect of a uniform axial
magnetic field on the nonlinear instability of a self-
gravitating infinite cylinder. All these investigations,
however, concerned with axisymmetric circular columnar
fluids, but asymmetric nonlinear analysis of circular jets
does not appear to be investigated. Although there are
some reports on nonaxisymmetric breakup of a liquid jet,
e.g., Yang [16], these analyses are confined within the
frame work of linear theory.

The purpose of this paper is to investigate the non-
axisymmetric nonlinear breakup of laminar conducting
liquid jet in the presence of an electric field. In this presen-
tation, a nonlinear problem is considered, in which a jet
of fluid having a circular cylindrical geometry is stressed
at the surface by a radial electric field. In this paper, by
the method of straining of coordinates, we have developed
a third order asymmetric nonlinear theory on the propa-
gation of waves over the surface of circular jet. A solution
by the multiple scales method to the same problem has
been obtained by Lee [17] recently. The basic equations
with the accompanying boundary conditions are given in
Section 2. The first order theory and the linear disper-
sion relation are obtained in Section 3. In Section 4 we
have derived second order solutions. In Section 5 third
order problem is considered and the cut-off wave number
is obtained. Finally Section 6 is devoted to some numerical
examples.



488 The European Physical Journal B

Fig. 1. Configuration for the cylindrical electric jet showing the outer electrode at r = b coxial with the equilibrium jet.

2 Formulation

We consider an incompressible, inviscid fluid jet whose
density is ρ and whose radius is R stressed at the surface
by constant radial field. The fluid is highly conducted so
as to exclude contribution of the electric field from the
fluid in the jet. The radius b of outer conducting cylinder
is much larger than the perturbations wavelength of the
jet. We use the cylindrical polar coordinates (r, θ, z) with
z-axis taken along the axis of the jet. The electric field
is applied by means of external rigid, perfectly conduct-
ing parallel electrode at r = b. The cylinder is at a fixed
potential V0 relative to that of the jet. The interface is
defined by a function of θ, z and time. Let η(θ, z, t) de-
note the elevation of the free surface measured from the
unperturbed level (see Fig. 1).

The consequential dynamics are retained if regions, ex-
ternal to the jet, are assumed to be filled with a fluid of
small density (compared to the density of the fluid in the
jet), and the effects of gravity are ignored. Now, a peri-
odic initial disturbance is given at the surface of the jet.
The motion is assumed to be irrotational. If u and E de-
note velocity field and the electric field, respectively, at
any time t, then

∇ · uuu = 0, ∇ ·EEE = 0.

If φ and ψ denote velocity and electric potential, respec-
tively, so that u = ∇φ, and E = −∇ψ, then the equations
for φ and ψ are given by

∇2φ = 0, (2.1)

for r ≤ R + η(θ, z, t),

∇2ψ = 0, (2.2)

for r ≥ R + η(θ, z, t).
The unit normal n to the surface is given by

n =
∇F
|∇F |

=
(
er − 1

r

∂η

∂θ
eθ − ∂η

∂z
ez

){
1+

(
∂η

r∂θ

)2

+
(
∂η

∂z

)2}− 1
2

,

(2.3)

where F = 0 is the equation of the surface of jet. The
condition that the electric field is satisfied on the deformed
surface of the jet and at external boundaries is

nnn× [[EEE]] = 0 at r = R+ η and r = b, (2.4)

where [[ ·]] represents the jump across the surface of the
jet.

All physical variables are normalized by using the ra-
dius of the undisturbed jet R for the characteristic length,
and

√
T/ρR for the characteristic speed, and RE2

0/T for
the characteristic electric field parameter. Here, T is the
surface tension and E0 is the field strength at the surface
of the undeformed jet. In the following, the primes on the
dimensionless variable η′ = η/R, b′ = b/R, d′ = d/R, and
so on, are omitted for conciseness.

The condition that the interface is moving with the
fluid leads to
∂η

∂t
− ∂φ

∂r
= − 1

r2
∂φ

∂θ

∂η

∂θ
− ∂φ

∂z

∂η

∂z
at r = 1 + η. (2.5)

Now the boundary condition at the free surface is,
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+ Γ
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(∇ψ ·nnn)2 − 1

2
|∇ψ|2

]
= C, (2.6)

where

Γ =
E2

0R

4πT
=

V 2
0

4πTR
,

and F is given by

F = r − η(θ, z, t) − 1.

Since the fluid is infinitely conducting (2.4), can now
be written as

ψ = 0 at r = 1 + η(θ, z, t). (2.7)
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At time t = 0, disturbance of amplitude η0 and wave
number K is imposed on the surface r = 1 of the jet. We
assume the initial conditions to be

η(z, 0) = η0 cosKz cosnθ + η2
0

(
−1

8

)
+ η4

0

(
− 1

128

)
,

(2.8)
∂η(z, 0)
∂t

= 0. (2.9)

For an initially sinusoidal disturbance with the undis-
turbed radius equal to 1, we have

r = R+ η0 cosKz cosnθ. (2.10)

For conservation of mass of a column of liquid of
length π/k, and volume π2/k, we have

π2

K
=

1
2

∫ 2π

0

∫ π/K

0

(R+ η0 cosKz cosnθ)2dzdθ

= R2π
2

K
+
η2
0

4
π2

K
·

Therefore

R =
(

1 − η2
0

4

)1/2

= 1 + η2
0(−

1
8
) + η4

0(− 1
128

) + . . . .

Substituting this back into (2.10), we obtain (2.8).
The nonlinear stability problem posed by (2.1–2.2)

and (2.5–2.9) is examined by the method of the strained
coordinates [18]. We now assume that the surface distur-
bance and the potential functions can be expanded in a
perturbation series in terms of smallness parameter η0.
Thus, we write

φ(r, θ, z, t) =
∞∑

n=1

ηn
0 φn(r, θ, z, t), (2.11)

ψ(r, θ, z, t) =
∞∑

n=0

ηn
0ψn(r, θ, z, t), (2.12)

and

η(θ, z, t) =
∞∑

n=1

ηn
0 ηn(θ, z, t). (2.13)

Now, we use following strained coordinates:

τ = tν = t

[ ∞∑
n=1

νnη
n−1
0

]
, (2.14)

ξ = kcz = z

[ ∞∑
n=1

knη
n−1
0

]
, (2.15)

and we introduce

K =
K

(k1 + η0k2 + η2
0k3 + · · · ) · (2.16)

If we substitute (2.11–2.13) into (2.5–2.9), boundary con-
ditions for various orders are obtained. A Maclaurin se-
ries expansion of the boundary conditions at r = 1 pro-
vides successive orders of approximation to these condi-
tions which are then used to specify the problem in those
orders.

3 Linear theory

Since (2.1) and (2.2) are linear, they must be satisfied
by each of the φm and ψm separately. The corresponding
boundary conditions and initial conditions are obtained
by substituting the expressions (2.11, 2.12) and (2.13) for
φ, ψ and η, respectively into (2.5–2.9), and equating equal
powers of ηn

0 . Equating the coefficient of the first power
of η0 leads to

∇2
0φ1 = 0, (3.1)

∇2
0ψ1 = 0, (3.2)

where

∇2
0 =

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+ k2

1

∂2

∂ξ2
·

The various boundary conditions at the interface are (at
r = 1)

−ν1∂η1
∂τ

+
∂φ1

∂r
= 0, (3.3)

ψ1 + η1
∂ψ0

∂r
= 0, (3.4)

− ν1
∂φ1

∂τ
+ η1 +

∂2η1
∂θ2

+ k2
1

∂2η1
∂ξ2

+ Γ

(
∂ψ1

∂r

∂ψ0

∂r
+ η1

∂ψ0

∂r

∂2ψ0

∂r2

)
= 0, (3.5)

where ψ0 = − ln r.
We can set ν1 = 1, and solutions to (3.3) and (3.4) are

given by

η1 = coshω1τ cosKξ cosnθ, (3.6)

φ1 =
ω

k

In(kr)
I ′n(k)

sinhω1τ cosKξ cosnθ, (3.7)

ψ1 =
Kn(kr)
Kn(k)

coshω1τ cosKξ cosnθ, (3.8)

where k = k1K and k1 is from the subsequent equa-
tion (3.11) and In(kr),Kn(kr) are the modified Bessel
functions of the first and second kind, respectively. Substi-
tuting (3.6–3.8) into (3.5), we obtain following dispersion
relation

ω2 =
k

Ia

{
1 − k2 − n2 − Γ (1 + kKa)

}
, (3.9)

where

Ia =
In(k)
I ′n(k)

, Ka =
K ′

n(k)
Kn(k)

· (3.10)

We choose k1 to be the solution of the equation

1 − k2
1 − n2 − Γ

{
1 + k1

K ′
n(k1)

Kn(k1)

}
= 0. (3.11)
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For k > k1, the solutions are stable, and if k < k1, the
surface waves grow. We see that k1 is the linear cut off
wave number which separates the stable from unstable
disturbances. It is well-known that in the linear theory
asymmetric disturbances are always stable if no electric
field is present. Equations (3.6–3.9) agree with those given
by Melcher [11].

4 Second order solutions

The second order problem is governed by

∇2
0φ2 = −2k1k2

∂2φ1

∂ξ2
, (4.1)

∇2
0ψ2 = −2k1k2

∂2ψ1

∂ξ2
· (4.2)

The boundary conditions at r = 1 are:
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,

(4.3)
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2
, (4.4)
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(
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where L(η2, φ2),M(η2, ψ2) and N(η2, φ2, ψ2) denote the
left-hand sides of (3.3, 3.4) and (3.5) with η1, φ1 and ψ1

being replaced by η2, φ2 and ψ2, respectively.
The initial conditions for the second order problem are

η2(θ, ξ, 0) = −1
8
,

∂η2
∂τ

= 0. (4.6)

For the solution of the second order problem, we assume

η2(ξ, θ, τ) = B21(τ) cos 2Kξ cos 2nθ +B22(τ) cos 2Kξ
+B23(τ) cos 2nθ +D2(τ), (4.7)

Using (4.7) and first order solutions in (4.1–4.6), we obtain
the following second order solutions:

B21(τ) = a21 coshω21τ + b21 cosh 2ω1τ + c21, (4.8a)
B22(τ) = a22 coshω22τ + b22 cosh 2ω1τ + c22, (4.8b)
B23(τ) = a23 coshω23τ + b23 cosh 2ω1τ + c23, (4.8c)

ψ2(r, θ, ξ, τ) = {B21(τ)+S22(τ)}K2n(2kr)
K2n(2k)

cos 2Kξ cos 2nθ

+ {B22(τ) + S22(τ)}K0(2kr)
K0(2k)

cos 2Kξ

+ {B23(τ) + S22(τ)}cos 2nθ
r2n

+ E2(τ), (4.9)

φ2(r, θ, ξ, τ) =
{
∂B21(τ)
∂τ

+ P21 sinh 2ω1τ

}
I2n(2kr)
2kI ′2n(2k)

× cos 2Kξ cos 2nθ

+
{
∂B22(τ)
∂τ

+ P22 sinh 2ω1τ

}
I0(2kr)
2kI1(2k)

cos 2Kξ

+
{
∂B23(τ)
∂τ

+ P23 sinh 2ω1τ

}
r2n

2n
cos 2nθ + F2(τ),

(4.10)

where

S22(τ) = −2kKa + 1
16

{cosh(2ω1τ) + 1}

D2(τ) = −cosh(2ω1τ) + 1
16

E2(τ) = −kKa + 1
8

{cosh(2ω1τ) + 1}

F2(τ) = − τ

16
[ω2

1{1 − I2
a(1 + n2/k2)}

+ 3 − k2 − n2 − Γ∆4]

− sinh(2ω1τ)
32ω1

[ω2
1{3 + I2

a(1 + n2/k2)}
+ 3 − k2 − n2 − Γ∆4],

P21 =
1
8
ω1{1 − 2kIa(1 + n2/k2)},

P22 =
1
8
ω1(1 − 2kIa),

P23 =
1
8
ω1(1 − 2Ian2/k),

and a21 and so on are listed in the Appendix A. If we
set n and Γ equal to zero in (4.7–4.10), these equations
completely agree with those obtained by Yuen except two
typographical omissions which were also pointed out by
Rutland and Jameson [19].
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5 Third order problem

We use the first and second order solutions to derive the
solution of the third order problem. In this section we
calculate k3 and ν3.

∇2
0φ3 = 2k1k3K2ω1

In(kr)
I ′n(k)

sinhω1τ cosKξ cosnθ, (5.1)

∇2
0ψ3 = 2k1k3K2Kn(kr)

Kn(k)
coshω1τ cosKξ cosnθ. (5.2)

The boundary conditions at r = 1 are as follows

−∂η3
∂τ

+
∂φ3

∂r
= P31(τ) cosKξ cosnθ + · · · , (5.3)

ψ3 + η3
∂ψ0

∂r
= R31(τ) cosKξ cosnθ + · · · , (5.4)

− ∂φ3

∂τ
+

(
1+

∂2

∂θ2
+k2

1

∂2

∂ξ2

)
η3+Γ

∂ψ0

∂r

(
∂ψ3

∂r
+η3

∂2ψ0

∂r2

)
=

[Q31(τ) − ΓS31(τ)] cosKξ cosnθ + · · · , (5.5)

and the initial conditions are

η3(θ, ξ, 0) = 0,
∂η3(θ, ξ, 0)

∂τ
= 0, (5.6)

where the expressions for P,Q,R and S are given in the
Appendix B. Following the same approach as in Section 4,
we assume

η3(τ) = B31(τ) cosKξ cosnθ + · · · . (5.7)

The third order electric and velocity potentials are now

ψ3 =
[
{B31(τ) +R31(τ)}Kn(kr)

Kn(k)
+

{
−k3

k1
kr
Kn+1(kr)
Kn(k)

+
k3

k1
k
Kn+1(k)
Kn(k)

Kn(kr)
Kn(k)

}

× coshω1τ

]
cosKξ cosnθ + · · · , (5.8)

φ3 =
[{

∂B31(τ)
∂τ

+ P31(τ) − k3

k1
ω1

(
−n+

n2 + k2

k
Ia

)

× sinhω1τ

}
In(kr)
kI ′n(k)

+
k3

k1
ω1r

In+1(kr)
kI ′n(k)

sinhω1τ

]

× cosKξ cosnθ + · · · . (5.9)

Substituting from (5.8) and (5.9) into (5.5), from the co-
efficients of cosKξ cosnθ, we obtain the following differ-
ential equation to determine B31(τ):

∂2B31(τ)
∂τ2

− ω2
1B31(τ) =

− k

Ia

[
ω2

1p31
Ia
k

+ q31 − Γ (s31 − kKar31)

− k3

k1

{
ω2

1

(
n2 + k2

k2
I2
a−1

)
−Γ (k2+n2−k2K2

a)
}]

coshω1τ.

(5.10)

Fig. 2. Exponential character of the growth of surfaces
waves (n = 1, Γ = 1).

In order η3 to be stable for K > k1, the right-hand side
of (5.10) has to be set equal to be zero. This determines
ν3 which can be shown to be

ν3 = − k

Iaω2
1

[Γ{(k3/k1)(k2 + n2 − k2K2
a)

+ r31kKa − s31} + q31a + 2k3k
2/k1]

− p31 +
k3

k1

k

Ia

{
(n2 + k2)

I2
a

k2
− 1

}
− k

Ia
q31b. (5.11)

Equation (5.11) shows that ν3 is infinite when ω1 = 0
at k = k1. Thus, for ν3 to be finite at ω1 = 0, we equate
to zero the quantity in the bracket of (5.11) when k = k1.
Thus

k3 = −k1
Γ (r31k1Ka − s31) + q31a

Γ (k2
1 + n2 − k2

1K
2
a) + 2k2

1

· (5.12)

6 Numerical results and discussion

When the initial amplitude η0 is plotted against the
numerically obtained break-up time TB on a semi-
logarithmic scale, a linear relationship emerges, show-
ing that the temporal growth of the disturbance is
exponential-like, just as in the linear theory.

In the numerical examples in the following, n is chosen
to be 1. Figures 2 and 3 show this exponential character
for various initial amplitudes. The slopes of these lines
can be used to calculate the actual growth rates. If we
examine these figures we can notice that, with the same
initial amplitude, it takes more time for the breakup of
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Fig. 3. Exponential character of the growth of surfaces
waves (n = 1, Γ = 2.5).

Fig. 4. Effective growth factor ωe plotted as a function of the
wave number.

the jet when k is greater. This linear relationship between
breakup times and the logarithms of amplitude is

ln η0 − ln η′0
TB − T ′

B

= ωe,

where ωe is the effective growth rate and TB is the breakup
time. ωe was calculated and plotted as a function of the
wave-number in Figure 3. Figure 4 shows that when Γ=2.5
the curve resembles a parabola which attains its maximum
value at about k = 1.3.

In addition to the fundamental mode, the presence
of various harmonics in η(θ, ξ, τ) is the result of the en-
ergy transfer from the fundamental mode to the modes
of higher orders. The breakup time of the jet is obtained
by increasing the time τ in η until the deepest trough
of the wave coincides with the centerline of the jet. The
breakup time and breakup point was determined by in-
creasing τ and ξ simultaneously until η(θ, ξ, τ) = −1 is
attained. With the critical value so obtained, η(θ, ξ, τ) is

Fig. 5. Wave profiles at the breakup for the dimensionless
wave number Γ = 2.5, η0 = 0.01.

Fig. 6. Comparison of the linear (· · ·) and nonlinear wave
profiles at the breakup. k = 1.6.

used to plot the curves for η versus ξ for various values of
k when Γ=2.5 in Figure 5.

In Figure 6 we compare the linear and nonlinear wave
profiles when k = 1.6, η0 = 0.01 and Γ = 2.5. The dot-
ted line represents a linear curve while solid line indicates
the nonlinear profile. We notice that the sinusoidal curve
develops into an asymmetrical form from the higher har-
monics, and the breakup time is greater with the nonlinear
theory. It should also be mentioned that k3 is not valid for
all wave-numbers.

Appendix A

a21 = −(b21 + c21), (A.1)

b21 =
1

8Ib(ω2
21 − 4ω2

1)
[2ω2

1Ib{1 − 2kIa(1 + n2/k2)}

+ k{ω2
1(3 − I2

a(1 + n2/k2))+2+k2 − 7n2}−kΓ∆1],
(A.2)
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c21 =
1

8Ibω2
21

[k
{
ω2

1(1 + I2
a(1 + n2/k2))

+2 + k2 − 7n2
} − kΓ∆1], (A.3)

a22 = −(b22 + c22), (A.4)

b22 =
1

8I0(ω2
22 − 4ω2

1)
[2ω2

1I0(1 − 2kIa)

+ k{ω2
1(3 − I2

a(1 − n2/k2)) + 2 + k2−n2}−kΓ∆2],
(A.5)

c22 =
1

8I0ω2
22

[k{ω2
1(1 + I2

a(1 − n2/k2))

+ 2 + k2 − n2} − kΓ∆2], (A.6)

a23 = −(b23 + c23 +
1
8
), (A.7)

b23 =
1

8(ω2
23 − 4ω2

1)
[2ω2

1(1 − 2Ian2/k)

+ n{ω2
1(3 + I2

a(1 − n2/k2))

+ 2 − k2 − 7n2} − nΓ∆3], (A.8)

c23 =
1

8ω2
23

[n{ω2
1(1 − I2

a(1 − n2/k2))

+ 2 − k2 − 7n2} − nΓ∆3], (A.9)

∆1 = 2kKb(kKa + 1) + kKa(kKa + 4) + 3 − 3k2 − 3n2,
(A.10)

∆2 = 2kK0(kKa + 1) + kKa(kKa + 4) + 3 − 3k2 − n2,
(A.11)

∆3 = −2n(kKa + 1) + kKa(kKa + 4) + 3 − k2 − 3n2,
(A.12)

∆4 = kKa(kKa + 4) + 4 − k2 − n2, (A.13)

and

ω2
21 =

2k
Ib

{1 − 4k2 − 4n2 − Γ (2kKa + 1)}, (A.14)

ω2
22 =

2k
I0

{1 − 4k2 − Γ (2kK0 + 1)}, (A.15)

ω2
23 = 2n{1− 4n2 − Γ (1 − 2n)}, (A.16)

with

Ib =
I2n(2k)
I ′2n(2k)

, Kb =
K ′

2n(2k)
K2n(2k)

,

I0 =
I0(2k)
I1(2k)

, K0 = −K1(2k)
K0(2k)

· (A.17a–d)

Appendix B

P31(τ) = p31ω1 sinhω1τ, Q31(τ) = q31 coshω1τ

R31(τ) = r31 coshω1τ, S31(τ) = s31 coshω1τ

α1 =
b21
2

+ c21, α2 = b22 + 2c22, α3 = b23 + 2c23,

β1 = b21 +
P21

2ω1
, β2 = 2b22 +

P22

ω1
, β3 = 2b23 +

P23

ω1
,

γ1 =
b21
2

− c21, γ2 = b22 − 2c22, γ3 = b23 − 2c23

p31 = − 1
4k

[
β1Ib

k2 + n2

k
+ β2I0k

+ β3n− (β1 + β2 + β3)
]

− Ia
2k

[γ1(k2 + n2) + γ2k
2 + γ3n

2]

− 3Ia
128k

[k(k2 + n2 + 6) − Ia(5n2 + 3k2)]

+
Ia
4k

{Ia(k2 + n2) − k}
(
γ1 + γ2 + γ3 +

1
8

)
,

(B.1)

q31 = q31a +
2k3k

2

k1
+ ω2

1

(
q31b +

ν3
k
Ia

)
, (B.2)

q31a = −1
2
{α1(k2 + n2) + α2k

2 + α3n
2}

+
9
64

(
3n2 + k2

2
− 3

)

+
1
2

(
α1 + α2 + α3 − 3

8

)
(1 − n2) +

27
64
n2

− 3
128

{2k2n2 + 9(k4 + n4)}, (B.3)

q31b =
1
2

[
{Ia(k2 + n2) − k} 45

64k
+ β1 + β2 + β3

]

+
3Ia
64k

(
n2 + k2 − Ia

k
n2

)

+
Ia
4k

{β1Ib
k2 + n2

k
+ β2I0k + β3n}

+
1
4

(
α1 + α2 + α3 − 3

8

)
, (B.4)

r31 = −1
2

[
kKbα1 + kK0α2 − nα3

− 3
16

(
kKb

2
+ kK0 − n

)
(2kKa + 1)

]

− kKa

4

(
α1 + α2 + α3 − 3

8

)

− 27
128

(k2 + n2 − kKa) +
9
64
, (B.5)
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s31 =
1
4
(α1 + α2 + α3 − 3

8
)(3 − k2 − n2 + 2kKa)

+
27
128

{kKa(k2 + n2 − 2kKa − 6) + 3k2 + 5n2}

+
1
2

[
kKbα1 + kK0α2 − nα3

− 3
16

(
kKb

2
+ kK0 − n

)
(2kKa + 1)

]
(kKa + 2)

− 1
2
{(n2 + k2)α1 + k2α2 + n2α3}

+
9
64

(n2 + k2)(3kKa + 1)

− 9
64

(6 + n2), (B.6)
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